Search results for "Duality relation"
showing 5 items of 5 documents
Tree-Loop Duality Relation beyond simple poles
2013
We develop the Tree-Loop Duality Relation for two- and three-loop integrals with multiple identical propagators (multiple poles). This is the extension of the Duality Relation for single poles and multi-loop integrals derived in previous publications. We prove a generalization of the formula for single poles to multiple poles and we develop a strategy for dealing with higher-order pole integrals by reducing them to single pole integrals using Integration By Parts.
A tree-loop duality relation at two loops and beyond
2010
The duality relation between one-loop integrals and phase-space integrals, developed in a previous work, is extended to higher-order loops. The duality relation is realized by a modification of the customary +i0 prescription of the Feynman propagators, which compensates for the absence of the multiple-cut contributions that appear in the Feynman tree theorem. We rederive the duality theorem at one-loop order in a form that is more suitable for its iterative extension to higher-loop orders. We explicitly show its application to two-and three-loop scalar master integrals, and we discuss the structure of the occurring cuts and the ensuing results in detail.
Duality-invariant Einstein-Planck relation and the speed of light at very short wavelengths
2011
We propose a generalized Einstein-Planck relation for photons which is invariant under the change $\ensuremath{\lambda}/a{l}_{P}$ to $a{l}_{P}/\ensuremath{\lambda}$, $\ensuremath{\lambda}$ being the photon wavelength, ${l}_{P}$ Planck's length, and $a$ a numerical constant. This yields a wavelength-dependent speed of light $v(\ensuremath{\lambda})=c/(1+{a}^{2}({l}_{P}/\ensuremath{\lambda}{)}^{2})$, with $c$ the usual speed of light in vacuo, indicating that the speed of light should decrease for sufficiently short wavelengths. We discuss the conceptual differences with the previous proposals related to a possible decrease of the speed of light for very short wavelengths based on quantum flu…
From multileg loops to trees (by-passing Feynman's Tree Theorem)
2008
We illustrate a duality relation between one-loop integrals and single-cut phase-space integrals. The duality relation is realised by a modification of the customary +i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem. The duality relation can be extended to generic one-loop quantities, such as Green's functions, in any relativistic, local and unitary field theories.
Generalized evolutes, vertices and conformal invariants of curves in Rn + 1
1999
Abstract We define the generalized evolute of a curve in ( n + 1)-space and find a duality relation between them. We also prove that the conformal torsion is a function of the speed of the generalized evolute and that the singular points of the generalized evolute (vertices) are conformal invariants.